• Svante@mastodon.xyz
    link
    fedilink
    arrow-up
    0
    ·
    11 months ago

    @MattMastodon @Sodis We’re going in circles. Volatile sources can only supply 40% of current demand for £50/MWh. The question is what fills the rest.

    If storage, then the price goes up immediately by at least two conversion losses from/to storage, in addition to the cost of storage itself. Which doesn’t exist at the needed scalability.

    Pointing to single projects is not meaningful, as we need to build a fleet anyway, which has its own dynamics.

    • AbolishBorderControlsNow@mastodonapp.uk
      link
      fedilink
      arrow-up
      1
      ·
      11 months ago

      @Ardubal @Sodis

      OK so I have googled the men capacity factor and of course #nuclear has nearly 100% and #renewables only 40%.

      But this just means it produces on average 40% of it’s capacity. You’d need a sunny windy day to get 100%

      What I’ve read about is a #SWB (Solar wind and battery) system with massive overcapacity

      So biomass, hydro and battery can take up the slack when needed. Or gas - which has a very low mean capacity factor <10% but is usually used as a last resort

      Cheap #zero #CO2

      • Svante@mastodon.xyz
        link
        fedilink
        arrow-up
        1
        ·
        11 months ago

        @MattMastodon @Sodis

        I’ll try to explain the 40%, sorry for the parts that you already know.

        Electric energy is always produced at the same time (and »place« roughly) as it is consumed. (You can’t pump electricity into some reservoir to be consumed later, you always need a different energy form for storage.)

        The problem with volatile sources is that they mostly (more than half) produce energy at the wrong time and/or the wrong place, and at other times produce nothing.

        • Svante@mastodon.xyz
          link
          fedilink
          arrow-up
          0
          ·
          11 months ago

          @MattMastodon @Sodis

          ⇒ Aside: the »place« problem is that you can’t build solar panels and wind turbines just anywhere, and they need a lot of space. E. g. Germany has now the problem that the wind blows much better in the north, but the industry is more in the south. So, you need a lot more/stronger transmission lines. Same for offshore wind: more wind at sea, but you need a lot of cables.

          The more wind and solar you already have, the more the good places are already taken.

          • Svante@mastodon.xyz
            link
            fedilink
            arrow-up
            0
            ·
            11 months ago

            @MattMastodon @Sodis

            ⇒ (But at least we already have transmission tech, it is now just a question of materials and effort.)

            So, assume that we have enough wind and solar that we can regularly produce 100% of demand from them. You can imagine peaks just touching the demand line at top demand.

            (You could imagine more than that, but that would mean overbuilding, which hurts the economics quite badly while not making the end result much better.)

            • Svante@mastodon.xyz
              link
              fedilink
              arrow-up
              0
              ·
              11 months ago

              @MattMastodon @Sodis

              ⇒ Now the volatile supply line has valleys between the peaks. If you integrate over time and place, the supply line covers about 40% of demand in this situation.

              That is /very rough/ and depends on a lot of factors, but my point is the same if it were 30% or 60%: where does the rest come from?

              - Transmission: as already mentioned, we know how to transmit electric energy, it’s just material and effort. This smoothes out the »place« dimension.

              • Svante@mastodon.xyz
                link
                fedilink
                arrow-up
                0
                ·
                11 months ago

                @MattMastodon @Sodis

                ⇒ - Storage: obviously, we’d want to smoothen out the time dimension as well. This means adding storage that can meet 100% of demand as well (volatile sources frequently drop to 0), and feeding it with enough additional clean sources that it can fill every expected gap (and gap accumulation).

                And here I’d like to repeat my point from before: the best (most effective) storage we have right now is pumped hydro, by far. And pumped hydro is not enough, by far.